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Abstract 

In this study, we present an efficient method, called the probabilistic collocation method 

(PCM), for uncertainty analysis of flow in unsaturated zone, in which the constitutive 

relationship between the pressure head and the unsaturated conductivity is assumed to follow 

the van Genuchten-Mualem model. Spatial variability of soil parameters in the von 

Genuchten model leads to uncertainty in predicting flow behaviors. The aim is to quantify the 

uncertainty associated with flow quantities such as the pressure head and the effective 

saturation. In the proposed approach, the input random fields, i.e., the soil parameters are 

represented via the Karhunen-Loeve expansion and flow quantities are expressed by 

polynomial chaos expansions (PCEs). The coefficients in the PCEs are determined by solving 

the equations for a set of carefully selected collocation points. To illustrate this approach, we 

use two-dimensional examples with different input variances and correlation scales. We also 

demonstrate how to deal with multiple input random parameters, including the uncorrelated 

and perfectly correlated cases. To validate the (PCM), we compare the mean and variance of 

the pressure head derived from the PCM and those from Monte Carlo (MC) simulations. The 

comparison reveals that the PCM can accurately estimate flow statistics with a much smaller 

computational effort than the MC. 

 

Index terms: 1805 Computational hydrology; 1869 Stochastic hydrology; 1873 Uncertainty 

assessment; 1875 Vadose zone 
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1. Introduction 

One of the crucial problems in modeling flow and transport in the subsurface is the 

treatment of uncertainty. Uncertainty may be caused by a number of factors. It is well known 

that geological media exhibit a high degree of spatial variation over various scales. The 

properties that control flow and transport in the media, such as permeability and porosity, are 

also strongly heterogeneous in space. This spatial variability may have a strong impact on 

fluid flow in the media. Furthermore, these properties are usually measured only at a limited 

number of locations because of the high cost associated with subsurface measurements. 

Although media properties are deterministic, due to the lack of information it is common to 

treat them as spatially varying random fields, characterized by statistic moments that are 

derived from a limited number of measurements. In turn, the partial differential equations 

governing the subsurface flow in such media become stochastic. 

 

In this study, we consider steady-state flow in the heterogeneous vadose zone, which 

connects the hydrology process above the land surface and the saturated aquifer in the 

subsurface. The vadose zone also acts as a buffer and passage in the process of pollutants 

movement from the land surface to the groundwater. Because of its important role in 

determining the pathway of pollutants, the vadose zone has received increasing attention in 

recent years.  Because of the coexistence of water and air phases in this zone, the equation 

governing the flow in this zone becomes nonlinear, i.e., the hydraulic conductivity depends 

on the pressure head. The nonlinear property coupled with uncertainty leads to a great 

complexity in the numerical simulations. 
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Many stochastic approaches have been developed to study the effects of spatial variability 

on flow in saturated and unsaturated zone (Jury, 1982; Yeh et al.,1985a,b; Mantoglou and 

Gelhar, 1987; Mantoglou,1992; Russo, 1993, 1995; Zhang and Winter, 1998; Zhang, 1998, 

1999, 2002; Lu and Zhang, 2002; Yang et al, 2004). The Monte Carlo (MC) simulation is the 

best-known and widely used approach in solving stochastic equations. As a statistical 

sampling approach, the MC is conceptually straightforward and easy to implement. The input 

random parameters are sampled repeatedly and independently from prescribed distributions, 

which may be obtained based on the field observations. Then, for each realization (sample) of 

input random fields, deterministic governing equations are solved to obtain the corresponding 

realization of output random fields. The required statistical properties, such as the statistical 

moments and probability density functions, can then be estimated based on these output 

realizations. A large number of realizations are needed to achieve statistical convergence, 

depending on the variability of the input parameters. Such a procedure usually leads to a high 

computational cost. As such, the applicability of MC is often limited to small-scale problems. 

In this study, for the purpose of validating the proposed approach, a large number of MC 

simulations are used and the results from these MC simulations are considered as the 

reference. 

 

In this study, a Karhunen-Loeve (KL) expansion based probabilistic collocation method 

(PCM) is presented for predicting flow in the vadose zone. This approach has been used for 

stochastic analysis in some fields (Webster et al., 1996; Tatang et al., 1997). Coupled with the 

Karhunen-Loeve expansion of the random permeability field, Li and Zhang (2007) applied 

the PCM method to the simulation of flow in saturated heterogeneous porous media. In this 



approach, the input random field is first expressed as the sum of its mean field and a zero 

mean perturbation, which is further decomposed into a KL expansion with an infinite number 

of terms. By truncating the KL series at a finite number of terms, the stochastic model is 

simplified into finite stochastic dimensions. That is, the random field is represented with a 

finite set of independent random variables. The steps in implementing the PCM are similar to 

those of MC in that replicates of the random field are solved deterministically. However, the 

input replicates are not randomly and equal-probably sampled but selected following certain 

rules and thus referred to as “representations” in this work. The objective of these selection 

rules is to significantly reduce the number of model simulations required for adequate 

estimation of output uncertainties, compared to the conventional MC method. 
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2. Stochastic differential equations 

Consider steady state flow in unsaturated porous media satisfying the following continuity 

equation and Darcy’s law: 

 

( ) ( )g∇ ⋅ =q x x ,                                                            (1) 

 

( ) ( , ) [ ( ) ]K ψ ψ= − ∇ +q x x x ,                                                 (2) 102 

103 

104 

105 

D

 

subject to the following boundary conditions: 

 

 ( ) ( ),BHψ =         ∈Γx x x ,                                                  (3) 106 

107  



 ,                                                 (4) ( ) ( ), NQ⋅ =         ∈Γq x n x x108 

109  

where q  is the specific discharge (flux), is the sink/source term, g ψ is the pressure head, z 

is the elevation, 

110 

zψ + he total head, and ( , )Kis t ψx is the unsaturated hydraulic conductivity, 

which depends on pressure head 

111 

ψ . ( )BH x  and (x essure head and 

flux on Dirichlet and Neumann boundary segments, respectively. 

)  Q are prescribed pr112 

113 

114 

115 

 

To solve this set of equations described above, one must specify the constitutive 

relationship between  and K ψ . Some empirical models have been investigated, including 

the Gardner-Russo model (Gardner, 1958; Russo, 1988), the Brooks-Corey model (Brooks 

and Corey, 1964), and van Genuchten-Mualem model (van Genuchten, 1980). In this study, 

we adopt the van Genuchten-Mualem model: 

116 

117 

118 

119 

120  

1( ) ( ) ( ){1 [1 ( )] }m m
s e eK K S S= − −x x x x 2121 

122 

123 

124 

,                                      (5) 

 

( ) {1 [ ( ) ( )] }n m
eS α ψ −= + −x x x ,                                               (6) 

 

where sK  is the saturated hydraulic conductivity, /( )e e s rS θ θ θ= − is the effective saturation, 125 

eθ is the effective water content, θs and θr are the respective saturated and residual water 

content, 

126 

α  is a fitting parameter that is inversely related with the pore size distribution,  

is another fitting parameter, and 

n127 

n1 1/m = − . The dependent variables ψ and  can be 

written as functions of space coordinate ( ), sink/source ( ), boundary conditions ( ,Q ), 

and soil properties (

eS128 

129 x g BH

, , , ,s s rK nα θ θ ): 130 

131  



( , , , , , , , , )B s sg H Q K n rψ ψ α= x θ θ132 

133 

,                                           (7) 

 

( , , , , , , , , )e e B s s rS S g H Q K nα θ θ= x .                                          (8) 134 

135  

Uncertainty associated with any argument in ψ  and  may lead to uncertainty of eS ψ and . 

In this study, we assume 

eS136 

n, ,sK α  are random fields whereas other arguments are 

deterministic. Our purpose is to estimate the statistical properties, i.e., the mean and variance, 

of the flow quantities such as the pressure and effective saturation, which are the output fields 

in our model. 
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3. Karhunen-Loeve Expansion 

The first step of solving stochastic equations is to find a proper way to represent the input 

and output random fields. In this study, we use Karhunen-Loeve expansion (KL) to represent 

the input fields, for given covariance functions of the input fields. Since the covariance 

structures of the output fields are not known in advance, they cannot be expanded using the 

KL expansion. Instead, they are expressed in a form of Polynomial Chaos Expansion (PCE).  

 

Consider an input random field ( , )U ωx , where D∈x  is the coordinates in the physical 

domain and 

149 

ω ∈Ω  denotes the coordinates in the probability space. It is assumed that the 

mean and covariance function of U

150 

( , )ωx  are known: ( ) ( , )U U ω=< >x x , 151 

1 2 1[ ( ,C U x 1( , ) ) ( )][Uω=< −x x x152 

153 

154 

2( , )U −x 2( )]Uω >x . These statistic moments can be 

estimated from the field data. For example, for any two points x1 = (x11, x12, x13)T and x2 = 

(x21, x22, x23)T in domain , the covariance function may take the separate exponential form D



 155 

3
2 1 2

1 2
1

|( , ) exp[ ]i i
U

i i

|x xC σ
λ=

−
= −∑x x ,                                          (9) 156 

157 

158 

159 

 

or the Gaussian form  

 

3
2 1 2

1 2
1

( , ) exp[ ( ) ]
4

i i
U

i i

x xC πσ
λ=

−
= − ∑x x 2160 

161 

.                                      (10) 

 

In the above, 2
Uσ  is the variance, iλ  is the correlation length in the ith dimension. By 

definition, the covariance function is symmetric and positive definite, which means that it can 

be decomposed as (Courant and Hilbert, 1953): 

162 

163 

164 

165 

U166 

167 

 

1 2 1 2
1

( , ) ( ) ( )i i i
i

C Uη
∞

=

= ∑x x x x ,                                             (11) 

 

where iη and are the eigenvalues and eigenfunctions of the covariance function, 

respectively. They can be solved from the following Fredholm equation of second kind: 

( )iU x168 

169 

170 

i171 

172 

173 

174 

175 

176 

 

1 2 2 2 1( , ) ( ) ( )i iD
C U d Uη=∫ x x x x x .                                          (12) 

 

Because of the symmetry and the positive definiteness of the covariance function, its 

eigenvalues are positive and real, and its eigenfunctions are orthogonal and form a complete 

set, 

 



( ) ( )i jD
U U d ijδ=∫ x x x ,                                                   (13) 177 

178  

where ijδ  is the Kronecker delta function, which equals to one for i j=  and zero otherwise. 

Then the random field can be expressed as 

179 

180 

181  

1
( , ) ( ) ( , ) ( ) ( ) ( )i i i

i
U U U U Uω ω ξ ω

∞

=

′= + = + ∑x x x x η x182 

183 

,                          (14) 

 

where iξ  are a set of orthogonal random variables satisfying 0iξ< >=  and i j ijξ ξ δ< >= . 

When the underlying random field is Gaussian, 

184 

iξ are standard Gaussian random variables. 

The expansion in equation (14) is called the Karhunen-Leove (KL) expansion. The random 

field 

185 

186 

( ,U )ωx  is decomposed as the sum of its mean and a perturbation, which can be further 

represented by a series of KL terms. Without loss of generality, it is assumed that the 

eigenvalues have been sorted such that 

187 

188 

...≥21 ≥ηη  and their corresponding eigenfunctions 

are also arranged accordingly. By truncating the infinite KL series at the Nth term, 

189 

( , )U ωx is 

approximated via N independent random variables

190 

,i 1,...,i Nξ   = , weighted by the 

eigenvalues and deterministic eigenfunctions. When the underlying random field is Gaussian, 

this approximation is optimal with mean square convergence. For some particular covariance 

functions defining on regular domains (such as rectangular domains in 2D), eigenvalues and 

eigenfunctions can be solved analytically (Ghanem and Spanos, 1991; Zhang and Lu, 2004). 

However, in general, the integral equation, i.e., (12), has to be solved numerically (Ghanem 

and Spanos, 1991). 

191 

192 

193 

194 

195 

196 

197 

198 

199 

 

One of the interesting features of the KL expansion is that the sum of all eigenvalues is 



related to the total variability of the input field. Setting 1 2= =x x x200 

201 

202 

]203 

204 

x

 in equation (11), 

integrating it over the domain D, and recalling orthogonality of eigenfunctions yields 

 

2

2

1

1

( ) ( , )

[ ( )

UD D

i iD
i

i
i

d C d

U d

σ

η

η

∞

=

∞

=

=

                  =

                  =

∫ ∫

∑∫

∑

x x x x x

x x ,                                           (15) 

 

where is the variance function of 2 ( ) ( , )U Cσ =x x ( , )U ωx . If ( , )U ωx is stationary, (15) 

leads to 

205 

2
1 Ui i

Dη σ∞

=
=∑ , where D is the measure of the domain . Equation (15) 

indicates that the total variability of 

D206 

( , )U ωx  over the whole domain is distributed to all KL 

terms, with the weight of 

207 

iη . The KL decomposition is a spectral decomposition. As will be 

shown in the illustrative examples, different KL terms reflect the variability on different 

length scales. So the physical meaning of the KL expansion is to separate the uncertainty on 

different spatial scales: those terms corresponding to large eigenvalues (leading terms) 

represent variability on larger scales and the terms corresponding to small eigenvalues for 

variability on smaller scales. Thus we can effectively approximate the stochastic property of a 

random field with relatively few random variables, by retaining those leading KL terms 

(terms with large eigenvalues). 

208 

209 

210 

211 

212 

213 

214 

215 

216 

217 

 

4. Polynomial Chaos Expansion 

Because the output random field ψ  or  depends on the input, it can be shown that eS ψ  

or  is a function of the random vector , where 

218 

eS 1 2( , ,..., )T
Nξ ξ ξ=ξ iξ  are the random 

variables used to approximate the input parameters. However, the specific relationship 

219 

220 



between the output random fields and  is yet to be determined. 1 2( , ,..., )T
Nξ ξ ξ=ξ221 

222  

Since the statistics of the output random fields are not known in advance, ψ  or  

cannot be decomposed using the KL expansion. Alternatively, the PCE is a more general 

representation that can be used under this condition. In the following derivations, we take the 

pressure head as an example. The effective saturation can be expanded in a similar way. 

Suppose 

eS223 

224 

225 

226 

ψ  can be expanded by the following form: 227 

228 

2i

  

1

1 2 1

2

2
1

( ) ( , )

) ...

i

i i i
i

a
1 1

1 1

1 2

1 2 3 1 2 3

1 2 3

0 1
1 1

3
1 1 1

( , ) ( ) ( ) ( )

( ) ( , ,

i i
i i

i i

i i i i i i
i i i

a a

a

ψ ξ ξ
=

Γ

+

∑ x ξ
229 

230 

ξ ξ ξ

∞ ∞

= =

∞

= = =

= + Γ +

            + Γ

∑ ∑

∑∑∑

x ξ x x

x
,                         (16) 

 

where and are deterministic coefficients. The basis 0 ( )a x
1 2 ... ( )

di i ia x
1

( ,..., )d i idξ ξΓ is a set of 

polynomial chaos with respect to those independent random variables 

231 

id1
,...,iξ ξ

1
( ,..., )d i id

(Winener, 

1938). For independent standard Gaussian random variables,

232 

ξ ξΓ are the 

multidimensional Hermit polynomials with order of . They are expressed as 

233 

234 

235 

d

 

1

1

2( ,..., ) ( 1)
...d

d

d
d

d i i
i i

eξ ξ
ξ ξ

∂
Γ = −

∂ ∂

ξ ξ
236 

237 

238 

239 

240 

241 

1 1
2( )

T T

e
ξ ξ

,                                  (17) 

 

where . By truncating the polynomial series in equation (16) at a certain order, 

we have an approximation of the output random field. In particular, the second-order 

approximation with Hermit polynomials can be written as 

1
( ,..., )T

i idξ ξ=ξ

 



1
2

0
1 1 1 1

ˆ ( , ) ( ) ( ) ( )( 1) ( )
N N N i

i i ii i ij i
i i i j

a a a a jψ ξ ξ
−

= = = =

= + + − +∑ ∑ ∑∑x ξ x x x x ξ ξ242 

243 

244 

245 

,                  (18) 

 

or a simplified form 

 

1

ˆ ( , ) ( ) ( )
P

j j
j

cψ
=

= Φ∑x ξ x ξ .                                                 (19) 246 

247 

248 

!)249 

250 

251 

252 

253 

 

There is a one-to-one correspondence between the terms in (18) and (19). The total number of 

PCE terms is , where  is the random dimensionality (the number of 

KL terms retained to represent the mean-removed random input fields) and  is the order of 

polynomial chaos. 

( )!/( !P N d N d= + N

d

 

One of the important properties of the polynomial chaos is that all the polynomials in 

equation (19) are mutually orthogonal, which means ( ) ( ) 0i j< Φ Φ >=ξ ξ for , and for 

,  can be evaluated easily (Ghanem and Spanos, 1991). Once the coefficients 

 are determined, as described in the next section, the statistical properties of the 

pressure head can be easily estimated from equation (19). For example, the mean pressure 

head is 

i ≠ j254 

255 

256 

257 

258 

259 

i j=

( )jc x

2
j< Φ >

 

1
1

ˆ ˆ( , ) ( , ) ( ) ( ) ( )
P

j j
j

c cψ ψ
=

=< >= < Φ > =∑x ξ x ξ x ξ x .                              (20) 260 

261 

262 

P

 

Note that in deriving equation (20), we have used the following properties of the polynomial 

chaos: and for1( ) 1Φ =ξ 1( ) ( ) ( ) 0j j< Φ >=< Φ Φ >=ξ ξ ξ 2,3,...j = . The variance of the 263 



pressure head is 264 

265  
2 2
ˆ

2 2

2 2

2

ˆ ˆ( ( , ) ( , ) )

( ) ( ) ( ) ( )

( )

P P

j k j k
j k

P

j j
j

c c

c

ψσ ψ ψ

= =

=

=< − < > >

      = < Φ Φ >

      = < Φ >

∑∑

∑

x ξ x ξ

x x ξ ξ

x

,                                     (21) 266 

267 

268 

269 

270 

271 

272 

273 

274 

275 

276 

277 

278 

279 

280 

281 

 

where  can be evaluated in advance. Higher-order terms can be calculated similarly. 2
j< Φ >

 

5. Probabilistic Collocation Method 

Galerkin’s approach and Probabilistic Collocation Method (PCM) are two of the methods 

that may be used to determine the coefficients  in the polynomial expansion. Here we 

choose PCM, which leads to independent equations and is thus capable of easily dealing with 

complex non-linear problems. 

( )jc x

 

5.1 Implementation of Probabilistic Collocation Method 

The probabilistic collocation method has no essential differences compared with the 

typical collocation method except that the typical collocation method is used to seek a 

deterministic solution whereas the PCM is used to seek a random solution defined on 

probability space. Again, we only demonstrate how to determine the coefficients in the PCE 

approximation of the pressure head. The coefficients in the PCE approximation of the 

effective saturation can be determined similarly. Let ( , )ψ ψ= x ξ  denote the solution of the 

nonlinear stochastic differential equations. We seek an approximate solution as described in 

282 

283 



equation (19). We define the residual between the unknown solution ( , )ψ x ξ  and this 

approximation as  

284 

285 

286  

ˆ( , ) ( , ) ( , )PR ψ ψ= −x ξ x ξ x ξ .                                               (22) 287 

288 

289 

 

The collocation method proceeds by requiring this residual vanishes at some sets of 

collocation points 1 2, ,..., Pξ ξ ξ . The procedure is summarized as follows (Li and Zhang, 

2007): 

290 

291 

292 

293 

P294 

295 

296 

 

First, choose P collocation points in the probability space, 

, as described in section 5.2. Secondly, substitute 

 into the KL expansion to generate a representation of the input field. 

For each of the P representations, the differential equations are deterministic and can be 

solved to give an output 

1 2( , ,..., ) , 1, 2,...,T
i i i iN iξ ξ ξ=     =ξ

1 2( , ,..., )T
i i i iNξ ξ ξ=ξ

( , )iψ x ξ . This leads to P sets of independent equations that can be 

solved in parallel or in sequence. With the P sets of solutions and by letting 

297 

(R , ) 0P i =x ξ , 

one has 

298 

299 

300 

P301 

302 

303 

 

1

( ) ( ) ( , ), 1, 2,...,
P

j j i i
j

c iψ
=

Φ =    =∑ x ξ x ξ .                                     (23) 

 

For each location x in the simulation domain, the above equations form  linear equations 

for  unknowns . The matrix of coefficients 

P

P ( )jc x ( )j iΦ ξ  and the right-hand sides 304 

( , i )ψ x ξ  are known. By solving this linear system, the coefficients in the PCE expansion can 

be determined for locations of interest. 

305 

306 



 307 

308 

309 

An alternate approach for determining the unknown coefficients is the Galerkin approach 

(Ghanem and Spanos, 1991). In this approach, the residual is required to be orthogonal to the 

basis functions ( )jΦ ξ  that are used in the PCE expansion, 310 

311  

( , ) ( ) 0, 1,2,...,P jR j< Φ >=       =x ξ ξ P312 

313 

314 

315 

316 

317 

318 

319 

320 

321 

322 

323 

324 

325 

326 

327 

328 

.                                      (24) 

 

Again, we have  constraints to determine the  unknown coefficients . Note that 

equation (24) results in P coupled equations.  Solving these coupled equations could be very 

complicated and time-consuming, especially when one considers spatially varying 

coefficients (when the solution is not a random variable but a random field) or nonlinear 

problems. On the other hand, the PCM method leads to uncoupled equations, each of which 

can be solved with existing, deterministic simulators. This feature makes the PCM applicable 

to linear or non-linear problems in a straightforward manner. 

P P ( )jc x

 

5.2 Selection of the Collocation Points 

One key issue in the PCM approach is the selection of collocation points. Previous studies 

have demonstrated that for a given order of the PCE approximation the coordinates of each 

collocation point should be selected from the roots of the next higher order orthogonal 

polynomial. This technique, which is analogous to Gaussian quadrature, will yield the result 

that is much more accurate than the randomly selected samples (Webster et al., 1996; Tatang 

et al., 1997). For the case of second-order Hermit PCE, the coordinates of collocation points 

are selected from the roots of the third-order Hermit polynomial 3 3ξ ξ− , i.e.,  3,0− , 329 



and 3 . Then each collocation point is a combination of these three roots; two examples of 

the collocation points are and 

330 

331 1 11 12 1( , ,..., ) (0,0,...,0)T T
Nξ ξ ξ= =ξ

2 21 22 2( , ,..., ) ( 3,0,...,0)T T
Nξ ξ ξ= =ξ . . 332 

333 

334 

!)335 

336 

337 

)

 

The number of collocation points required is equal to the number of coefficients to be 

determined , where  is the dimensionality of the probability space 

and  is the order of PCE approximation (2 in this case). However, the number of available 

points satisfying the preceding requirement, that is the number of different combinations of 

roots, is . Note that 

( )!/( !P N d N d= +

( 1)NM d= +

N

d

1(d + M  is always larger than , the number of points 

needed. As a result, we may select P best combinations out of M combinations in total. One 

may optimize the selection of the collocation points with the following consideration (Li and 

Zhang, 2007). 

P338 

339 

340 

341 

342 

343 

 

1)  Keep as many points as possible in the region with a high probability density. Actually 

the probability density ( )ρ ξ  is the weight in the integral for calculating the statistical 

moments.  

344 

345 

346  

( ) ( , ) ( )dψ ψ ρ
Ω

= ∫x x ξ ξ ξ                                                (25) 347 

348  

   2 ( ) ( ( , ) ( , ) ) ( )dψσ ψ ψ ρ
Ω

= − < >∫x x ξ x ξ ξ2 ξ                                   (26) 349 

350  

By setting ˆ ( , ) ( , )ψ ψ=x ξ x ξ at the region with a high probability density one can 

increase the accuracy of the estimated statistical moments. For instance, when 

351 

352 

1 2, ,..., Nξ ξ ξ N are  independent standard Gaussian random variables, the random 353 



point  follows the following joint distribution: 1 2( , ,..., )T
Nξ ξ ξ=ξ354 

355  

/ 2) (2 ) exp(
2

T
Nρ π=

ξ( )−
ξξ356 

357 

358 

359 

360 

,                                            (27) 

 

and this density function reaches the highest value at the origin point , 

which corresponds to the mean parameter field. Therefore, this point is always kept. In 

addition, from (27) it is seen that in selecting these points one should keep as many 

zeros as possible in 

(0,0,...,0)T=ξ

ξ . 361 

362  

2)  The matrix with its components ( )j iΦ ξ in equation (23) must have a full rank. Thus the 

equations are mutually independent and a unique solution can be solved. To achieve 

this objective, one should first sort the available points in an order of decreasing 

probability density. For instance, the point  should be the first collocation 

point. Then, for the candidate of the ( 1)thi + collocation point, the ( 1)thi +  row of matrix 

( )j iΦ

363 

364 

365 

366 

367 

(0,0,...,0)

ξ must be linearly independent with the previous i rows. Otherwise, this 

candidate is abandoned and the point with the next highest probability density should 

be tested. For given (N,d), the sets of collocation points may be selected once and 

tabulated for other simulations. 

368 

369 

370 

371 

372  

If both ψ and are represented via the same basis polynomial chaos, the collocation 

points for computing these two output fields can be the same, which means the computational 

effort for solving the statistical moments of the two output fields is almost the same 

compared with the computational effort for only one output field. For example, if both 

eS373 

374 

375 

ψ and 376 



eS are represented via the second-order Hermit polynomial chaos and the input random 

dimensionality is 10, each of the output field will have 

377 

(10 2)!/(10!2!) 66P = + =

2P

P P

 

coefficients to be determined. We just chose 66 collocation points from the combinations of 

the roots of the third-order Hermit polynomial and solve the deterministic equations at these 

points, for pressure head and water content simultaneously, rather than select  

collocation points and solve the deterministic equations  times,  for pressure and  

for water content.  
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6. Illustrative examples 

We consider steady state unsaturated flow in a two-dimensional vertical cross section of 

size 3 by 3 meters, discretized into 30×60 rectangular elements of 0.1 by 0.05 meters. We 

assign a constant deterministic flux rate 0.005Q = − at the upper boundary (negative 

value standing for infiltration), a constant deterministic pressure head 

388 

0ψ = (water table) at 

the bottom, and no flow at the left and right boundaries. The saturated and residual water 

content are 

389 

390 

0.4sθ =  and 0.01rθ = , respectively. 391 

392  

Note that both sK  and α  are positive quantities and  is always larger than one. Here 

we assume that the log saturated hydraulic conductivity

n393 

f ln( )sK= , the log pore size 

distribution parameter

394 

ln( )β α=  and the fitting parameter ls n( 1)n= −  are second-order 

stationary Gaussian random fields with mean

395 

U< > and separate exponential covariance 396 

2

1i

2 2
1 2

|( , ) e ]i
U U

1| i

Ui

xp[ x x
=
∑C σx x

λ
−

= − , where , ,U f 2
Uσs Uλβ= ;  is the variance, is the 

correlation length of U . The subscripts 

397 

1, 2i =  refer to the horizontal and vertical 398 



dimensions, respectively. The variability of a parameter can also be given in terms of the 

coefficient of variation 

399 

V VCV Vσ= < > , for , , ( 1)sV K nα= −

/ d

. The mean values of the 

three input parameters are set to be 

400 

1sK m< >= , 12mα −< >=

lnV

, and . With the 

known mean and the coefficient of variation of a log-normal random field , the moments 

of the corresponding normal random field 

1.4n< >=

V

401 

402 

U =  can be easily calculated via following 

relations (e.g., Zhang, 2002): 

403 

404 

405 

406 

407 

2
V408 

409 
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411 

 

2 21 )]VCV+2ln 0.5ln[ (U V V< >= < > − < > ,                                  (28) 

 

2 ln[1 ]U CVσ = + ,                                                       (29) 

 

or conversely,  

 

2exp[ 0.5 ]UV U σ< >= < > + ,                                               (30) 412 

413  

2 2[exp( ) 1]exp[2V U U 2 ]Uσ σ= − < σ> + .                                       (31) 414 

415 

416 

417 

418 

419 

420 

421 

422 

 

We design a series of model cases with different model complexity (single input random 

field or multiple input random fields) and parameter variabilities. For each case, we first 

derive the statistical moments (mean and variance) of output fields using the Probabilistic 

Collocation Method (PCM). For the purpose of comparison, we conduct Monte Carlo (MC) 

simulations with a large number of realizations. For each single run of Monte Carlo or PCM 

simulations, the FEHM code (Zyvoloski et al., 1997) is used to solve the deterministic 

differential equations. Unless otherwise noted, the comparison of results from the MC 



method and the PCM is illustrated only along the central vertical line (x=1.5m). In case 1, we 

demonstrate calculated statistical moments of both the pressure head and the effective 

saturation. In other cases, only the results of pressure head are shown for the sake of 

succinctness. 
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6.1 Single random input 

In the first four cases, we treat α  and n  to be deterministic but ln( )sf K=  as the only 

input random field with different levels of variability and different correlation lengths as 

shown in Table 1. These cases are designed to explore the impact of the input variability and 

the correlation length on the accuracy and efficiency of the PCM. As described previously, 

we decompose 

429 

430 

431 

432 

ln( )sf K=  using the KL expansion and retain the first N random terms: 433 

1
(N

fii
( , ) ( ) ) )fi (if f

=∑ f

( ,

ω ξ η= +x x x434 ω . The output random fields, the pressure head and the 

water content, can be written as 1 2, ,..., )f f fNψ ψ ξ ξ ξ= x  and 1 2 ,..., )f fN( , ,e e fS S ξ ξ ξ= x

N

,  

respectively, indicating that the dimensionality in the probability space is . 
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The contours of some selected eigenfunctions in case 1 are plotted in Figure 1. It is shown 

that the first eigenfunction represents the spatial variability on the large scale and the 

subsequent eigenfunctions represent the spatial variability on smaller scales. The eigenvalues 

and their summation for cases 1 and 2 are shown in Figure 2. A decaying trend of eigenvalues 

can be observed, which suggests that more input variability is distributed on large spatial 

scales. The decaying rate of eigenvalues depends on the correlation length relative to the 

domain size. The eigenvalues in case 1 decay faster than those in case 2, where the 

correlation scale is smaller. In the first three cases, we keep 20 terms in the KL expansion and 



use the second-order PCE. Under these conditions, 231 (= 22!/20!/2!) times of simulations 

are needed. For comparison, we explore the convergence of MC simulations based on 

simulations up to 8000 realizations. In particular, we are interested in the accuracy of MC 

results from 231 realizations, which represent the more-or-less equivalent computational cost 

required by the PCM. The statistical moments computed from all 8000 MC realizations are 

considered to be the “true” solutions for assessing the accuracy of the PCM. The mean and 

variance of pressure head and effective saturation from case 1 are plotted in Figure 3. First, 

from the results, we observe that the PCM solutions are in good agreement with those from 

8000 MC simulations. However, the MC results computed from 231 realizations deviate 

substantially from the MC results from 8000 realizations (“true” solutions). Since the 

computational efforts for 231 PCM simulations are more or less the same as those for 231 

MC simulations, the comparison indicates that the PCM is computationally more efficient 

than the MC simulations. Actually, for the mean pressure head, about 2000 MC simulations 

are needed to obtain the convergent result in this example. While for the pressure head 

variance, about 4000 MC simulations are necessary to yield a convergent result (Fig. 4). 

Secondly, the pressure head variance from the PCM is symmetric with respect to the vertical 

central line (shown in Figure 5), which is consistent with the symmetric boundary conditions 

on the left and right boundaries. For the MC approach, the symmetry of the pressure variance 

can be achieved only when a large number of simulations are conducted. Furthermore, the 

profiles of the curves in Figure 3(a) and Figure 3(b) are quite similar to that in (c) and (d). 

This is because the effective saturation is directly dependent on the pressure head. At the 

upper part of the domain, a lower pressure head leads to a lower water content and a large 

variability in the water content is consistent with a large variability in the pressure head. 
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Figure 6 compares the pressure head variance derived from both the MC method and the 

PCM for different degrees of conductivity variability and two different correlation lengths. In 

cases 1 and 2, all input parameters are the same, except that the conductivity variability in 

case 2 is smaller than that in case 3. It is seen from the figure that the PCM is more accurate 

when the conductivity variability is small. In cases 1 and 3, all input parameters are the same, 

except that the correlation length of the input random field in case 1 is larger than that in case 

3. The figure indicates that the accuracy of the PCM decreases with the decrease of the 

correlation length. The reason is that the accuracy of the truncated KL expansion depends on 

the ratio of the domain size and the correlation length. It has been shown that, for a small 

correlation length, more terms are needed in the truncated KL expansion to retain the same 

accuracy (Ghanem and Spanos, 1991; Zhang and Lu, 2004). We also run case 4 in which all 

the input parameters are the same as those in case 3 but the number of retained KL terms is 

30. Under this condition, 496 simulations are required to implement the second-order PCM 

approach. It can be seen that when more terms are included in the truncated KL expansion, 

the results from the PCM are closer to the MC results. 
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6.2 Multiple input random fields 

One of the advantages of the PCM is the ease in dealing with multiple input random 

parameters, especially for uncorrelated or perfectly correlated inputs. In this section, we 

demonstrate the implementation of the PCM with multiple inputs by the following two cases. 

 

6.2.1 Uncorrelated input random fields 

In case 5, we assume that all the three input parameters are mutually uncorrelated random 



fields. With this assumption, we can extend the previous PCM procedure from single input to 

multiple inputs simply by increasing the input random dimensionality. Express the three input 

parameters in the form of the KL expansion separately: 

493 

494 

495 

496  

1
( , ) ( ) ( ) ( )

fN

fi fi i
i

f fω ξ ω η
=

= + ∑x x f x497 

498 

,                                       (32) 

   

1
( , ) ( ) ( ) ( )

N

i i i
i

β

β ββ ω β ξ ω η β
=

= + ∑x x x499 

500 

,                                       (33) 

 

1
( , ) ( ) ( ) ( )

sN

si si i
i

s s sω ξ ω η
=

= + ∑x x x501 

502 

,                                         (34) 

 

where { }fiξ , { }iβξ  and { }siξ  are all mutually independent Gaussian random variables. The 

pressure head can be written as 

503 

1 1 1( , ,..., , ,..., , ,..., )
f sf fN N s sNββ βψ ψ ξ ξ ξ ξ ξ ξ= x , indicating that 

the total degree of freedom in the probability space is 

504 

f sN N N Nβ= + + . 505 

506  

We truncate the KL expansion of ln( )sf K= , ln( )β α= and ln( 1)s n= −  by keeping 10, 

15, 15 terms, respectively. The total degree of freedom is 40. The mean and variance of 

pressure derived from both PCM and MC are compared along the central vertical profile, as 

shown in Figure 7. It is shown that the PCM performs well. Compared with the single input 

cases, due to high random dimensionality, the number of simulations required in the PCM is 

increased significantly (from 231 to 861). 
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6.2.2 Perfectly correlated input random fields 



In case 6, we assume that there is a positive perfect correlation between ln( )sf K=  and 515 

ln( )β α= , but both of them are uncorrelated with ln( 1)s n= − . This assumption is based on 

the following consideration. From its physical meaning, 

516 

α  is inversely related with the 

bubbling pressure. On the other hand, both the bubbling pressure and the saturated 

conductivity are directly dependent on the pore size. A large pore size not only causes a high 

saturated conductivity but also suggests a low bubbling pressure and hence a large

517 

518 

519 

α . Some 

previous experimental studies indicate such a positive correlation (Simunek et al., 1998). 

Since there is no justifiable data to reveal a specific covariance function between 

520 

521 

f  and β , 

we just assume they are positively and perfectly correlated in our model.  

522 

523 

524  

A perfect correlation between ln( )sf K=  and ln( )β α=  means that there is a linear 

relationship between them 

525 

b+af = β , where a and b are constants. From this relationship, 

one has 

526 

baf += β  and βσσ af = , which can be written as a normalized form: 527 

528  

( , ) ( ) ( , ) ( ) ( , )
f

f x f x x x Y x
β

ω β ω β ω
σ σ

− −
= = ,                                   (35) 529 
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where  is a Gaussian field with zero mean and unit variance. We approximate  using 

the truncated KL expansion 

Y Y

 

1
( , ) ( ) ( ) ( )

YN

Yi Yi i
i

Y Y Yω ξ ω η
=

= + ∑x x x534 

535 

,                                       (36) 

 

and represent the two perfectly correlated input random fields via ( , )Y ωx : 536 

537  



( , ) ( ) ( , )ff f Yω σ= +x x x ω538 

539 

,                                              (37) 

 

( , ) ( ) ( , )Yββ ω β σ ω= +x x x .                                             (38) 540 
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Similarly, we decompose  in a KL form: 

 

1
( , ) ( ) ( ) ( )

sN

si i i
i

s s sβω ξ ω η
=

= + ∑x x x544 

545 

,                                       (39) 

 

where { Yiξ } and { siξ } are mutually independent. Thus the pressure head can be written as 546 

s1 1( ,..., ,..., )
YY Y s sN, ,Nψ ψ ξx ξ

Y N+

ξ ξ=

sN N=

, indicating that the total degree of freedom in the probability 

space is . We keep 15 KL terms to represent bothY and , respectively. The total 

degree of freedom is 30.  
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Again, the mean and variance of pressure derived from both the PCM and MC are 

compared along the central vertical profile. It is shown in Figure 8 that the results given by 

PCM and MC are in good agreement. However, the variances of pressure head given by both 

approaches are much less than that in the uncorrelated case. It may be explained qualitatively. 

On the basis of equations (5) and (6) in the van Genuchten model, at a certain pressure the 

effective saturation will decrease as α  becomes larger (note that the pressure is negative). 

Thus the relative conductivity will become smaller. However if saturated conductivity 

increases simultaneously, some of their impacts on the conductivity

556 

557 

( , )K ψx will be 

neutralized with each other. Therefore, the pressure variance is reduced. 
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559 
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7. Discussions and Conclusions 561 

562 
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583 

Although the stochastic equations describing flow in unsaturated zone is complex because 

of the nonlinearity, in this study we demonstrated that the Probability Collocation Method 

(PCM) is still applicable. Like the MC method, the PCM is based on solving a set of 

deterministic equations. The difference between the two approaches is that the PCM requires 

the solutions at a set of selected collocation points whereas the MC requires the solutions at 

random sampling points. Both approaches can be implemented straightforwardly with the 

availability of a deterministic simulator. Like the MC, the PCM can be applied to various 

problems, either linear or non-linear, either with single or multiple inputs. 

Because the stochastic structures of both input and output random fields have been 

carefully considered, the PCM can capture the stochastic behavior of the dependent variables 

such as the pressure field and the effective saturation by a small number of model simulations. 

Hence the efficiency of the PCM is significantly increased compared to the MC. This 

advantage is crucial in solving large-scale problems because solving each deterministic 

equation may require a large computational effort. 

 

As shown in the illustrative examples, the PCM performs better when the input correlation 

scale is relatively large and the input variance is relatively small. If the correlation scale is too 

small or the input variance is too large, the PCM may yield inaccurate results. Actually, the 

truncations in the KL and PCE approximations are two major sources of errors in the PCM 

procedures, and the accuracy of KL and PCE approximations depend on the input correlation 

length and input variance, respectively. Our on-going research attempts to derive posterior 

error estimators, which may be used to determine the proper random dimensionality and the 



order of approximation to balance the solution accuracy and computational efficiency. 584 

585  



Notation 586 

587 

588 

589 

590 

591 

C   Covariance function 

CV  Coefficient of variation 

jc   Coefficient of the jth PCE term 

D  Physical domain 

d   Order of polynomial chaos 

f   ln( )sf K= , log saturated hydraulic conductivity 592 

593 

594 

595 

g   Sink/source term 

BH  Prescribed pressure head on Dirichlet boundary segments 

K   Unsaturated hydraulic conductivity 

sK  Saturated hydraulic conductivity 596 

m597 

598 

599 

n600 

601 

602 

603 

  Fitting parameter in the van Genuchten-Mualem model 

N   Random dimensionality (Number of KL terms retained to represent the mean-removed 

fields) 

  Fitting parameter in the van Genuchten-Mualem model 

P   Number of PCE terms 

Q   Prescribed specific discharge on Neumann boundary segments 

q   Specific discharge 

PR  Residual between the true solution and PCE approximation with terms P604 

r605 

606 

607 

s

  Separation vector 

eS  Effective saturation 

s    ln( 1)s n= −

U   Normal random input field ( , ,U f β= ) 608 



V   Lognormal random input field ( , , ( 1)sV K nα= − ) 609 

x610   Cartesian coordinates in the physical domain 

z   Elevation 611 

α   Fitting parameter in the van Genuchten-Mualem model 612 

β   ln( )β α=  613 

614 jΦ  Hermit polynomials 

DΓ  Dirichlet boundary 615 

616 NΓ  Neumann boundary 

iη   Eigenvalues 617 

λ   Correlation length 618 

eθ   Effective water content 619 

rθ   Residual water content 620 

sθ   Saturated water content 621 

ρ   Probability density 622 

2σ   Variance 623 

624 Ω   Probability space 

ω   Point in the probability space 625 

ξ   Collocation point 626 

iξ   Orthogonal standard Gaussian random variables 627 

ψ   Pressure head 628 

ψ̂   PCE approximation of the pressure head 629 
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Table captions 

Table 1. Summary of the parameters in all illustrative cases 
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Table 1. Summary of the parameters in all illustrative cases 

Cases 
( / )

sK
m d

< >  
(%)

KsCV  
( )

fx

m

λ  
( )

fy

m

λ  
(1/ )m

α< >  
(%)
CVα  

( )
x

m
βλ  

( )
y

m
βλ  n< >  ( 1)

(%)
nCV −  

( )
sx

m
λ  

( )
sy

m

λ  Random 

dimensionality 

1 1 100 1 1 2 0 NA NA 1.4 0 NA NA 20 

2 1 50 1 1 2 0 NA NA 1.4 0 NA NA 20 

3 1 100 0.5 0.5 2 0 NA NA 1.4 0 NA NA 20 

4 1 100 0.5 0.5 2 0 NA NA 1.4 0 NA NA 30 

5a 1 10 1 1 2 10 1 1 1.4 5 1 1 10+15+15=40 

6b 1 10 1 1 2 10 1 1 1.4 5 1 1 15+15=30 

a Case 5: ,f β and are uncorrelated;  s696 

b Case 6: f and β are perfectly correlated but are uncorrelated with s  697 
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Figure captions 

Fig.1 Selected eigenfunctions for Case 1 ( 1.0x y mλ λ= = ) 700 

701 

702 

.0

Fig.2 Eigenvalues of the separate exponential covariance with different correlation scales 

Fig.3 Comparison of results from MC and PCM methods for Case 1 

( , 1100%KsCV = x y mλ λ= = ) along the vertical central line 703 

704 

705 

706 

707 

708 

709 

Fig.4 The mean and variance given by MC with different number of simulations, case 1 

Fig.5 Contour maps of the pressure variance computed from MC simulations with a different 

number of realizations (case1) 

Fig.6 Comparison of pressure variance derived from PCM and MC, with different input 

variance and different correlation length, cases 1, 2, 3 and 4 

Fig.7 Statistics of the pressure head, with three uncorrelated input fields, case 5 

Fig.8 Statistics of the pressure head, with perfectly correlated ln( )f Ks= and ln( )β α= , case 6 710 

711  
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(c) The 3rd eigenfunction                           (d) The 6th eigenfunction 
 

Fig. 1 Selected eigenfunctions for Case 1 ( 1.0x y mλ λ= = ) 720 
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(a) Eigenvalues                                 (b) Summation of eigenvalues 
 

Fig. 2 Eigenvalues of separate exponential covariance with different correlation scales 
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Fig.3 Comparison of results from MC and PCM methods for Case 1 ( 100%KsCV = , 1.0x y mλ λ= = ) along the 

vertical central line. 
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Fig. 4 The mean and variance given by MC with different number of simulations, case 1 
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Fig.5 Contour of the pressure variance in case 1 
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Fig.6 Comparison of pressure variance derived from PCM and MC, with different input variance and different 
correlation length, cases 1, 2, 3 and 4 
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Fig.7 Statistics of the pressure head, with three uncorrelated input fields ( case 5). 
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Fig.8 Statistics of the pressure head, with perfectly correlated ln( )f Ks= and ln( )β α= , case 6. 763 
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